Visualizing Monodromy

Myles Ashitey (Pomona College), Brian Bishop (Pomona College), Kendall Bowens (Tuskegee University)

Abstract
Arbitrarily choose loops γ around 0 and 1 in $\mathbb{P}^{1}(\mathbb{C})$ that start and end at x_{0}. Compute the paths that start at P_{k}, where P_{k} is the $k^{\text {th }}$ point that corresponds to the inverse image of x_{0}. We refer to these paths as $\widetilde{\gamma}$. Monodromy describes the movement of $\widetilde{\gamma}$ and γ in correspondence to Belyĭ map. A Belyı̆ map $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a rational function with at most three critical values; we may assume these are $\{0,1, \infty\}$. The endpoints of our path correspond to a σ_{0}, σ_{1} and $\sigma_{\infty} \in S_{N}$ such that $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$. This project sought to simplify the concept of monodromy for a general audience in the form of an eight minute video. Our movie not only provides visualizations of monodromy on the Riemann Sphere but highlights monodromy's connection to Belyĭ maps and Dessin d'Enfant through real world examples.

Background

- Critical Values: Consider a function $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ for the Riemann Shere $S=\mathbb{P}(\mathbb{C})$. drical point $P \in S$ satistes $(P)=0$ A

Belyǐ Maps: Gennadiĭ Bely̌̌ [2] proved that a compact connected Riemann surface S of genus g is completely determined by the existence hat a Belyy map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a rational map with critical values $\{0,1, \infty\}$.
Dessin d'Enfant: Following an idea from Alexander Grothendieck [3], ve define a Dessin d"Enfant (French for "child's drawing") as a bipartite midpoints of faces $F=\beta^{-1}(\infty)$, and edges $E=\beta^{-1}([0,1])$. For our purposes, these Dessins d 'Enfant are embedded on the sphere using stereographic projection.
Degree Sequences: Choose $P \in B \cup W \cup F$. Denote the ramification ndex e_{P} as the number of edges at vertex P. A theorem of Adolf Hurwitz [4] asserts that, given a Bely̌ map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ of degree N or a Riemann surface S of genus g,
$N=\sum_{P \in B} e_{P}=\sum_{P \in W} e_{P}=\sum_{P \in F} e_{P}=|B|+|W|+|F|+(2 g-2)$.
The collection of the ramification indices can be collected into a multiset of multisets called the degree sequence \mathcal{D}

Monodromy Triple

Sometimes a Degree Sequence does not correspond to a Belyŭ Map and some Sometimes a Degree Sequence does not correspond to a Belyi Map and some
times a Degree Sequence corresponds to more than one Belyĭ Map. Adol Hurwitz [4] proved that a Degree Sequence \mathcal{D} corresponds to a Belyi map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ of degree N on a Riemann Surface S of genus g if and properties:
i. The composition $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$ is the trivial permutation.
ii. The subgroup $\operatorname{Mon}(\beta)=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ of the symmetric group S_{N} enerated by the colled the monol group of β.
i. Eact of these perma

$\sigma_{0}=\prod_{P \in B}\left(b_{P, 1} b_{P, 2} \cdots b_{P, e_{P}}\right)$		$B=\beta^{-1}(0)$
$\sigma_{1}=\prod_{P \in W}\left(w_{P, 1} w_{P, 2} \cdots w_{P, e_{P}}\right)$	where	$W=\beta^{-1}(1)$
$\sigma_{\infty}=\prod_{P \in F}\left(f_{P, 1} f_{P, 2} \cdots f_{P, e_{P}}\right)$		$F=\beta^{-1}(\infty)$

The tuple $\left(\sigma_{0} \sigma_{1}, \sigma_{\infty}\right)$ is called the
Degree Sequence whenever it exists.

Dessin D'Enfant \rightarrow Monodromy Triples

 We now explain how to generate a Monodromy Triple ($\sigma_{0} \sigma_{1}, \sigma_{\infty}$) from a Dessin D'Enfant. Let's use the following graph as an example:

Monodromy in 3D
 We can compute the Monodromy Triples $\left(\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right)$ from a ollowing steps:
\#1. Choose $x_{0} \neq 0,1, \infty$; and compute the inverse image $\beta^{-1}\left(x_{0}\right)=$ $\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$.
\#2. Choose loops γ around $\epsilon=0,1$ in $\mathbb{P}^{1}(\mathbb{C})$ that start and end at x_{0}. For example, we often choose $\gamma_{\epsilon}(t)=\epsilon+\left(x_{0}-\epsilon\right)$
\#3. For each P_{k}, compute those paths $\tilde{\gamma}_{\epsilon}^{(k)}$ on the Riemann Surface S such that $\beta \circ \widetilde{\gamma}_{\epsilon}^{(k)}=\gamma_{\epsilon}$ and $\widetilde{\gamma}_{\epsilon}^{(k)}(0)=P_{k}$
\#4. Compute permutations $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ satisfying $\widetilde{\gamma}_{\epsilon}^{(k)}(1)=P_{\sigma_{\epsilon}(k)}$ and $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$
Figure 1: Dessin of Degree $N=3 \&$ Degree Sequence $\mathcal{D}=\{\{3\},\{1,1,1\},\{3\}\}$
i. Label the edges of the graph from 1 to N
ii. For each "black" vertex $P \in B$, read the labels counterclockwise to form the e_{p}-cycle $\left(b_{p, 1} b_{p, 2} \ldots b_{p, e_{p}}\right)$

$$
\sigma_{0}=\prod_{P \in B}\left(b_{P, 1} b_{P, 2} \cdots b_{P, e_{P}}\right)
$$ the e_{p}-cycle $\left(w_{p, 1} w_{p, 2} \ldots w_{p, e,}\right)$

$$
\sigma_{1}=\prod_{P \in W}\left(w_{P, 1} w_{P, 2} \cdots w_{P, e_{P}}\right)
$$

v. For each "face" $P \in F$, walk around the edge going clockwise by reading the labels which appear just after a "white" vertex to form the e_{p}-cycle $\left(f_{p, 1} f_{p, 2} \ldots f_{p, e_{p}}\right)$. Combine all the faces to form the permutation

$$
\sigma_{\infty}=\prod_{P \in F}\left(f_{P, 1} f_{P, 2} \cdots f_{P, e_{P}}\right)
$$

. As a check verify that $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$
igure 4: Left: Dessin of Degree $N=3 \&$ Degree Sequence $\mathcal{D}=\{\{3\},\{1,1,1\},\{3\}\}$ steregraphically projected on the sphere. Reght: Dessin of Degree $N=1 \&$ Degre

https://youtu.be/hcHkvVDesl

Monodromy in Life
 Can you guess what Belyí map, Dessin D'Enfant and Monodromy triple this juggling motion corresponds to?

PRiME Time!

https://youtu.be/zUfb8AfGmPQ
Future Work

- Create a movie that contains visuals of monodromy on the torus - Identify other juggling tricks as the monodromy of some Belyy map - Compute on higher genera, degree, and other Riemann surfaces

Reference

${ }^{1]}$ N. M. Adrianov, N. Ya Amburg, V. A. Dremov, Yu A. Levitskaya, E. M. Kreines, Yu. Yu. Kochetkov, V. F. Nasretdinova, and G. B. Shabat. "Catalog of dessins d'enfants with ≤ 4 edges. ttps://arxiv.org/abs/0710.2658v1
2] G. V. Belyi. "On extensions of the maximal cyclotomic field having a given classical Galois group." J. Reine Angew. Math., 341 (1983), 147-156. 3] A. Grothendieck. "Esquisse d'un programme." Rapport Scientifique, 1984.
[4] Adolph Hurwitz. "Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten." Mathematische Annalen, 39(1):1-60, 1891
(5] Michael Klug, Michael Musty, Sam Schiavone and John Voight. "Numer 5. Michael Klug, Michael Musty, Sam Schiavone, and John Voight.
cal calculation of three-point branched covers of the projective line. https://arxiv.org/abs/1311.2081v3
(6) Michael Musty, Sam Schiavone, Jeroen Sijsling, and John Voight " Database of Belyĭ Maps." https://arxiv.org/abs/1805.07751v2
7] Leonardo Zapponi. "What is ... a Dessin d'Enfant?" Notices Amer Math. Soc., (2003), 788-798.

Acknowledgements

- Dr. Edray Herber Goins (Pomona College)
- Dr. Alex Barrios (Carleton College)
- Alia Curtis
- Dr. Tim McEldowne
- Department of Mathematics, Pomona College
- National Science Foundation (DMS-1560394)

