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Abstract

Arbitrarily choose loops γ around 0 and 1 in P1(C) that start and end
at x0. Compute the paths that start at Pk, where Pk is the kth point
that corresponds to the inverse image of x0. We refer to these paths as
γ̃. Monodromy describes the movement of γ̃ and γ in correspondence to
a Bely̆ı map. A Bely̆ı map β : P1(C) → P1(C) is a rational function
with at most three critical values; we may assume these are {0, 1, ∞}.
The endpoints of our path correspond to a σ0, σ1 and σ∞ ∈ SN such
that σ0 ◦ σ1 ◦ σ∞ = 1. This project sought to simplify the concept
of monodromy for a general audience in the form of an eight minute
video. Our movie not only provides visualizations of monodromy on the
Riemann Sphere but highlights monodromy’s connection to Bely̆ı maps
and Dessin d’Enfant through real world examples.

Background

•Critical Values: Consider a function β : S → P1(C) for the Riemann
Sphere S = P1(C). A critical point P ∈ S satisfies β′(P ) = 0. A critical
value w ∈ P1(C) is w = β(P ) the value of a critical point P ∈ S.

•Bely̆ı Maps: Gennadĭı Bely̆ı [2] proved that a compact connected
Riemann surface S of genus g is completely determined by the existence
of a rational map β : S → P1(C) which has three critical values. We say
that a Bely̆ı map β : S → P1(C) is a rational map with critical values
{0, 1, ∞}.

•Dessin d’Enfant: Following an idea from Alexander Grothendieck [3],
we define a Dessin d’Enfant (French for “child’s drawing”) as a bipartite
graph with “black” vertices B = β−1(0), “white” vertices W = β−1(1),
midpoints of faces F = β−1(∞), and edges E = β−1([0, 1]

)
. For our

purposes, these Dessins d’Enfant are embedded on the sphere using
stereographic projection.

•Degree Sequences: Choose P ∈ B ∪W ∪ F . Denote the ramification
index eP as the number of edges at vertex P . A theorem of Adolf
Hurwitz [4] asserts that, given a Bely̆ı map β : S → P1(C) of degree N
for a Riemann surface S of genus g,

N =
∑
P∈B

eP =
∑
P∈W

eP =
∑
P∈F

eP = |B| + |W | + |F | + (2 g − 2).

The collection of the ramification indices can be collected into a multiset
of multisets called the degree sequence D.

Monodromy Triple
Sometimes a Degree Sequence does not correspond to a Bely̆ı Map and some-
times a Degree Sequence corresponds to more than one Bely̆ı Map. Adolf
Hurwitz [4] proved that a Degree Sequence D corresponds to a Bely̆ı map
β : S → P1(C) of degree N on a Riemann Surface S of genus g if and
only if there exist three permutations σ0, σ1, σ∞ ∈ SN with the following
properties:

i. The composition σ0 ◦ σ1 ◦ σ∞ = 1 is the trivial permutation.

ii. The subgroup Mon(β) = 〈σ0, σ1, σ∞〉 of the symmetric group SN
generated by them is a transitive subgroup. This is called the monodromy
group of β.

iii. Each of these permutations is a product of disjoint cycles:

σ0 =
∏
P∈B

(
bP,1 bP,2 · · · bP,eP

)
B = β−1(0)

σ1 =
∏
P∈W

(
wP,1 wP,2 · · · wP,eP

)
where W = β−1(1)

σ∞ =
∏
P∈F

(
fP,1 fP,2 · · · fP,eP

)
F = β−1(∞)

The tuple (σ0 σ1, σ∞) is called the monodromy triple associated with a
Degree Sequence whenever it exists.

Dessin D’Enfant → Monodromy Triples

We now explain how to generate a Monodromy Triple (σ0 σ1, σ∞) from a
Dessin D’Enfant. Let’s use the following graph as an example:

Figure 1: Dessin of Degree N = 3 & Degree Sequence D =
{
{3}, {1, 1, 1}, {3}

}
Corresponding to β = z3

i. Label the edges of the graph from 1 to N .

ii. For each “black” vertex P ∈ B, read the labels counterclockwise to form
the ep-cycle (bp,1 bp,2 ...bp,ep).

σ0 =
∏
P∈B

(
bP,1 bP,2 · · · bP,eP

)
iii. For each “white” vertex P ∈ W , read the labels counterclockwise to form

the ep-cycle (wp,1 wp,2 ...wp,ep).

σ1 =
∏
P∈W

(
wP,1 wP,2 · · · wP,eP

)
iv. For each “face” P ∈ F , walk around the edge going clockwise by reading

the labels which appear just after a “white” vertex to form the ep-cycle
(fp,1 fp,2 ...fp,ep). Combine all the faces to form the permutation

σ∞ =
∏
P∈F

(
fP,1 fP,2 · · · fP,eP

)
v. As a check verify that σ0 ◦ σ1 ◦ σ∞ = 1
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Figure 2: Permutation Triples: σ0 = (1 3 2), σ1 = (1) (2) (3), σ∞ = (1 2 3)

Bely̆ı Maps → Monodromy Triples

We can compute the Monodromy Triples
(
σ0, σ1, σ∞

)
from a given

Bely̆ı map β : S → P1(C) with the following steps:
#1. Choose x0 6= 0, 1, ∞; and compute the inverse image β−1(x0) =

{P1, P2, . . . , PN}.

#2. Choose loops γ around ε = 0, 1 in P1(C) that start and end at x0. For
example, we often choose γε(t) = ε + (x0 − ε) e2πit.

#3. For each Pk, compute those paths γ̃(k)
ε on the Riemann Surface S such

that β ◦ γ̃(k)
ε = γε and γ̃

(k)
ε (0) = Pk.

#4. Compute permutations σ0, σ1, σ∞ ∈ SN satisfying γ̃(k)
ε (1) = Pσε(k) and

σ0 ◦ σ1 ◦ σ∞ = 1.

Motivating Question

How do you visualize Monodromy?

Monodromy in 2D

Figure 3: Left: Dessin of Degree N = 3 & Degree Sequence D =
{
{1, 2}, {1, 2}, {3}

}
Right: Dessin of Degree N = 1 & Degree Sequence D =

{
{1}, {1}, {1}

}

https://youtu.be/I5de7noo1T0

Monodromy in 3D

Figure 4: Left: Dessin of Degree N = 3 & Degree Sequence D =
{
{3}, {1, 1, 1}, {3}

}
stereographically projected on the sphere. Right: Dessin of Degree N = 1 & Degree
Sequence D =

{
{1}, {1}, {1}

}
stereographically projected on the sphere.

https://youtu.be/hcHkVVDeslw

Monodromy in Life
Can you guess what Bely̆ı map, Dessin D’Enfant and Monodromy triple this
juggling motion corresponds to?

PRiME Time!
Take a look at the video we produced to explain the concept of Monodromy!

https://youtu.be/zUfb8AfGmPQ

Future Work

• Create a movie that contains visuals of monodromy on the torus
• Identify other juggling tricks as the monodromy of some Bely̆ı map
• Compute on higher genera, degree, and other Riemann surfaces
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